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Abstract

Industrial Big Data (IBD) and Artificial Intelligence (Al) are propelling the new era of manufacturing — smart manufacturing. Manufacturing
companies can competitively position themselves amongst the most advanced and influential companies by successfully implementing Quality
4.0 practices. Despite the global impact of COVID-19 and the low deployment success rate, industrialization of the Al mega-trend has dominated
the business landscape in 2020. Although these technologies have the potential to advance quality standards, it is not a trivial task. A significant
portion of quality leaders do not yet have a clear deployment strategy and universally cite difficulty in harnessing such technologies. The lack
of people power is one of the biggest challenges. From a career development standpoint, the higher-educated employees (such as engineers)
are the most exposed to, and thus affected by, these new technologies. 79% of young professionals have reported receiving training outside of
formal schooling to acquire the necessary skills for Industry 4.0. Strategically investing in training is thus important for manufacturing companies
to generate value from /BD and Al Following the path traced by Six Sigma, this article presents a certification curricula for Green, Black, and
Master Black Belts. The proposed curriculum combines six areas of knowledge: statistics, quality, manufacturing, programming, learning, and
optimization. These areas, along with an ad hoc 7-step problem solving strategy, must be mastered to obtain a certification. Certified professionals
will be well positioned to deploy Quality 4.0 technologies and strategies. They will have the capacity to identify engineering intractable problems
that can be formulated as machine learning problems and successfully solve them. These certifications are an efficient and effective way for
professionals to advance in their career and thrive in Industry 4.0.
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1. Introduction in senior executive positions will be somewhat unaffected [45].
According to Deloitte [3], 79% of young professionals have re-
ported receiving training outside of formal schooling to acquire
the necessary skills for Industry 4.0. In this context, this pa-
per presents a Quality 4.0 initiative and a certification program
for quality/manufacturing engineers, managers, and directors.
Certified professionals in this initiative will have the tools and
skillset required to take the lead in deploying Quality 4.0 prac-
tices and technologies.

To successfully deploy Quality 4.0 practices and technolo-
gies on manufacturing systems, engineers, managers, and direc-
tors must be trained on the basic principles of Artificial Intelli-
gence (Al). Modern technologies, such as Industrial Big Data
(IBD) and Al are propelling a new era of manufacturing —smart
manufacturing— within the context of the fourth industrial rev-
olution (Industry 4.0). According to Forbes, the lack of people
power is one of the biggest challenges facing these technologies

in business [42]. Brookings estimates that the higher-educated, “Quality 4.0 is the fourth wave in the quality
higher-paid workers such as engineers will be most exposed to, movement (1.Statistical Quality Control, 2.Total
and therefore affected by, these new technologies. Other em- Quality Management, 3.Six Sigma, 4.Quality 4.0).
ployees, such as those in either the lower-payed roles or those This quality philosophy is built on the statisti-
cal and managerial foundations of the previous

* Carlos A. Escobar. Tel.: +1-586-662-7501 philosophies. It leverages industrial big data and
E-mail address: carlos.].escobar@gm.com (Carlos A. Escobar). artificial intelligence to solve an entirely new range

of intractable engineering problems. Quality 4.0
is founded on a new paradigm based on empiri-

2351-9789 © 2021 The Authors. Published by Elsevier B.V. cal learning, empirical knowledge discovery, and

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-ne-nd/4.0/)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME
10.1016/j.promfg.2021.06.085


http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2021.06.085&domain=pdf

Carlos A. Escobar et al. / Procedia Manufacturing 53 (2021) 748-759 749

real-time data generation, collection, and analysis
to enable smart decisions [24].”

Despite the global impact of COVID-19 and the low de-
ployment success rate (13%-20% [52, 58]), industrialization
of the Al mega-trend has dominated the business landscape in
2020 [32, 46]. According to Quality Digest, a significant por-
tion of quality leaders do not yet have a clear deployment strat-
egy [15], and universally cite difficulty in harnessing these tech-
nologies [49]. To prepare tomorrow’s workforce for Industry
4.0, strategically investing in training approaches is crucial for
manufacturing companies to generate value from A/ and /BD
technologies [3]. According to Montgomery [44]:

“quality professionals are going to have to mas-
ter some of the skills of computer science, such as
understanding the structure of large databases, ba-
sic data mining techniques, image processing, and
data visualization techniques.”

Certification is a formal process for recognizing a person that
has achieved competency (experience, theory, knowledge, edu-
cation) in a specific area [35]. Certification organizations are
formed by knowledgeable, experienced, and skilled profession-
als with the capacity to both identify the required competen-
cies and develop the curriculum to achieve them. Certified Sys-
tems Engineering Professional (CSEP), Six Sigma Black Belt
(SSBB), and Professional Engineers (PE) are good examples
of certifications. These certifications are issued by the Interna-
tional Council on Systems Engineering (INCOSE), American
Society of Quality (ASQ) and National Society of Professional
Engineers (NSPE), respectively.

Competences acquired during the certification process set
certified engineers apart from others. Usually, unique skills gen-
erate responsibilities that come with more authority and greater
earning potential. According to the American Society of Me-
chanical Engineers (ASME), mechanical engineers with a PE
license have a 15% greater median income than unlicensed
engineers [39]. On the other hand, in the quality domain, Six
Sigma certified engineers are expected to lead a change within
an organization and play a strong leadership role. Their salary is
often directly related to their belt color [31]. Black Belts, on av-
erage, earn significantly more money (34%) than Green Belts;
whereas Master Black Belts earn significantly more (30%) than
Black Belts [5, 34, 53]. Certifications are an efficient and effec-
tive way to advance to new professional levels.

Six Sigma is a quality philosophy founded on statistics and
DMAIC (Define, Measure, Analyze, Improve, Control), a 5-step
problem solving strategy. Six Sigma is globally applied across
the manufacturing industry, because it delivers measurable, tan-
gible economical benefits with a customer focus. Following
the same convention of the Japanese sport, Karate, belt colors
(Green, Black, Master Black Belts) are used to recognize profi-
ciency in this philosophy. Today, whereas the Six Sigma philos-
ophy is still necessary, Quality 4.0 is the next natural step in the
evolution of quality.

The factory of the future is driven by manufacturing sys-
tems that exhibit fast increasing complexity, hyper-dimensional

feature spaces, as well as non-Gaussian, pseudo-chaotic behav-
ior, which counteracts orthodox statistical methods, but opens
a whole new avenue of opportunities for Al. In this context,
the manufacturing industry is in the initial stages of adopting
Quality 4.0. Therefore, certified professionals in this area will
be agents of change and may position themselves in leadership
positions.

Process Monitoring for Quality (PMQ)-the Quality 4.0
initiative—is an /BD- and Al-driven quality philosophy that uses
process-data for real-time defect detection, where defect de-
tection is formulated as a binary classification problem. It is
a blend of process monitoring and quality control. Empirical
knowledge discovery aimed at process redesign and trouble-
shooting augmentation are at the core of this philosophy. PMQ
proposes a 7-step problem solving strategy to identify and
solve high value engineering intractable problems; JADLPRR—
Identify, Acsensorize, Discover, Learn, Predict, Redesign, Re-
learn.

This paper anthologizes several publications [1, 19, 22—
24, 27] of the authors and their experience studying complex
problems—as part of the Manufacturing Systems Research Lab
of General Motors—to propose the certification curricula and re-
quirements for Green, Black, and Master Black Belts in Quality
4.0. As described in Fig. 1, the curriculum combines six areas
of knowledge—statistics, quality, manufacturing, programming,
learning, optimization—and the PMQ 7-step problem solving
strategy that must be mastered to obtain a certification.

IADLPRR

Manufacturing

Quality 4.0

Learning

Programming

Optimization

Fig. 1: Areas of knowledge of Quality 4.0.

The rest of the paper is organized as follows. A review of
Six Sigma is presented in Section 2. A brief description of PMQ
and its applications are presented in Section 3. An overview of
the problem solving strategy proposed by PMQ is presented in
Section 4. The requirements and competences for the Green,
Black and Master Black Belt certifications in Quality 4.0 are
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described in Section 5. Finally, conclusions and future research
are contained in Section 6.

2. Six Sigma

In this section, the Six Sigma certification program context
and basic background is presented. Six Sigma was developed
in the 80s by Motorola, one of the world’s leading manufactur-
ers of electronics, and it became part of the company’s DNA.
In 1988, Motorola won the first Malcolm Baldrige National
Quality Award. The Motorola University offered Six Sigma cer-
tifications to engineers around the globe. Soon after, General
Electric (GE) adopted Six Sigma from Motorola in 1995, and
under Welch, it became corporate doctrine. The company in-
vested more than one billion USD to train thousands of em-
ployees, and the system was adopted by every GE business unit.
In early 2000, GE surpassed Microsoft to become the world’s
most valuable company [59].

Today, Six Sigma is embedded with lean management [16],
supply chain [13], design [69], and various other process im-
provement approaches to achieve synergized benefits.

2.1. DMAIC - Six Sigma Problem Solving Strategy

In Six Sigma, problems are solved following the 5-step prob-
lem solving strategy DMAIC (Define, Measure, Analyze, Im-
prove, Control) proposed by “the father of Six Sigma,” Bill
Smith [17]. It is an effective process improvement cycle for
structured solution development. The 5-step strategy is as fol-
lows:

o Define is the first step, where the problem is selected and
its potential benefits assessed. This stage includes vari-
ous activities, such as team members selection, project
charter development, scope and goal identification, prob-
lem statement, business case development, bottom line
impact estimation, and project schedule preparation.

e Measure is the second step, in which the problem is
translated into a measurable form, and measurements of
the process are taken. Activities in this step include: data
collection chart creation, current level of process perfor-
mance assessment, and quality cost calculation.

e Analyze is the third step, where the Critical To Qual-
ity (CTQ) influencing factors and causes are identified.
These potential root causes are determined through a
cause-and-effect matrix.

e Improve consists of designing and implementing adjust-
ments to the process to improve the performance of the
CTQs. The main goal of this step is to develop the prob-
lem solution. Intense experimentations are performed to
statistically validate solutions and the cause-and-effect
relationships previously hypothesized in the matrix.

o Control consists of the empirical verification of the
project’s results. The objective is to ensure that the so-
lution created in the Improve phase is well-implemented

and maintained. Moreover, the opportunity of replicating
the solution to other processes is also evaluated.

2.2. Belt Color Convention — Six Sigma Mastery Levels

The belt color has its roots in the realm of martial arts
(Karate). This naming convention is used to describe a level
of mastery of Six Sigma and it is obtained through a certifica-
tion process. The most common levels are Green, Black, and
Master Black Belts. Certified people conduct projects and im-
plement improvements at different levels, depending on their
respective belt color. In descending order of responsibilities:

e Master Black Belt: Trains and coaches Black Belts and
Green Belts. Functions more at the Six Sigma program
level by developing key metrics and the strategic direc-
tion. Acts as an organization’s Six Sigma technologist and
internal consultant.

e Black Belt: Leads problem-solving projects. Trains and
coaches project teams.

o Green Belt: Assists with data collection and analysis for
Black Belt projects.

The American Society for Quality (ASQ) offers external cer-
tifications in the different belt levels. In each certification, the
candidate is required to pass a written examination that con-
sists of multiple-choice questions that measure comprehension
of the body of knowledge [4].

2.2.1. Six Sigma in the Age of Big Data

Quality 4.0 is the next natural step in the evolution of qual-
ity, as the Six Sigma paradigm based on traditional statistics
is not designed to efficiently/effectively address the challenges
posed to IBD [61]. Statistics draws population inferences from
a sample. It focuses on analyzing and summarizing experimen-
tal data under assumptions and it is more suited for processing
lesser amounts of linear, repeatable data derived from systems
where relationships are relatively stable [10]. Whereas Ma-
chine Learning Algorithms (MLA) automatically learn predic-
tive patterns from huge data sets. They learn from observational
data, complex non-linear patterns that usually exist in hyper-
dimensional spaces, without assumptions or a predefined model
form. To cope with the big volumes of data, MLA have embed-
ded computational efficiency concepts to enable computational
feasibility, e.g., stochastic gradient descent [18], XGBoost [11].
Machine learning programs usually improve with more data,
and they are intrinsically designed to automatically learn dy-
namic relationships e.g., new trends, patterns, or sources of
variations. But, this come at the expense of explain-ability [57],
as they are considered black boxes with little interpret-ability or
understandability capacity. Both paradigms (traditional statis-
tics and machine larning) are complementary, therefore, quality
engineers need to combine them in a way that plays to each of
their strengths.

According to Montgomery [44], quality professionals need
to learn computer science skills and data mining techniques to
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thrive within Industry 4.0. While it is clear that MLA can deal
more effectively with the volume and complexity posed by big
data, there is still little research or documentation aimed at cre-
ating guidelines for integrating big data with Six Sigma [2]. Re-
cently, leading academic and research scholars have turned their
attention towards addressing this research gap.

3. Process Monitoring for Quality — a Quality 4.0 Initiative

In the context of Industry 4.0, PMQ [1] is a Quality 4.0 ini-
tiative that systematically guides the application of Al to IBD to
generate value, Fig. 2. It is a blend of Process Monitoring (PM)
and Quality Control (QC) (Fig. 3) aimed at real-time defect de-
tection and empirical knowledge discovery, where detection is
formulated as a binary classification problem. PMQ is founded
on Big Models (BM) [19], a predictive modeling paradigm that
applies machine learning, statistics, and optimization to process
data to develop the classifier, Fig. 4. Data mining —empirical—
results help to identify the driving features of the system and un-
cover hidden patterns. This information is further investigated
by domain knowledge experts to generate a new set of hypothe-
ses that are tested by experimental means, i.e., design of ex-
periments. Discovered information is used to augment human
troubleshooting and guide process redesign and improvement.
Fig. 5 shows the conceptual framework of PMQ.

Quality 4.0

Fig. 2: PMQ in the context of Industry 4.0 [24].

Fig. 3: Process monitoring for quality [1].

In the era of Industry 4.0, quality benchmarks are very
high. However, although most manufacturing processes gener-
ate only a few Defects Per Million of Opportunities (DPMO),
customers expect perfect quality. A single warranty event can
significantly impact the company’s reputation. Therefore, rare
quality event detection is one of the most relevant challenges
addressed by PMQ. The BM learning paradigm is founded on

Industrial
Big Data

machine Lo
. optimization
learning

Big
Models

Fig. 4: Industrial big data big models concept [1].
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Fig. 5: PMQ conceptual framework.

ad hoc learning methods to effectively analyze these data struc-
tures.

3.1. Binary Classification of Quality

In a binary classification of quality problem, a positive result
refers to a defective item, and a negative result refers to a good
quality item, Formulation 1.

1 if i item is defective (+)
0 if i item is good (-)

Label; = { %))

The confusion matrix [29] is a table used to summarize the
predictive performance of a classifier, Table 1. The TP is a de-
fective item correctly classified, the FP is a good quality item
classified as defective. The TN is a good quality item correctly
classified, whereas the FN is a defective item not detected. The
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type-I (@) error refers to the FP rate, and the type-II (8) error
describes the FN rate (i.e., missing rate). In this context, 3 is the
probability that a defective item will be missed by the classifier.

Table 1: Confusion matrix.

Predicted good Predicted defective
Good item True Negative (TN)  False Positive (FP)
Defective item | False Negative (FN)  True Positive (TP)

3.2. Applications

Though quality inspections are widely practiced before, dur-
ing, and after production, they still highly rely on human capa-
bilities. According to a recent survey, almost half of the respon-
dents claimed that their inspections were mostly manual (i.e.,
less than 10% automated) [8]. PMQ proposes to use real-time
process data to automatically monitor and control the processes,
i.e., identify and eliminate defects.

This application has the desirable characteristics of a ma-
chine learning project. The basic objective is to learn a repeti-
tive, simple mental concept performed by inspectors, where the
task is formulated as a binary classification problem.

To demonstrate how PM(Q advances the state of the art of
quality, three traditional QC scenarios without A/ are analyzed
in Fig. 6. Then, their counterparts are presented in Fig. 7.

A typical manufacturing process generates only a few
DPMO, Fig. 6. The majority of these defects are detected
(TP) by either a manual/visual inspection, Fig. 6(a) or by a
SPC/SQC system, Fig. 6(b). Detected defects are removed from
the value-adding process for a second evaluation, where they
are finally either reworked or scrapped. Since neither inspec-
tion approaches are 100% reliable[55, 68], they can commit FP
(i.e., call a good item defective) and FN (i.e., call a defective
item good) errors. Whereas FP create the hidden factory effect
by reducing the efficiency of the process, FN should always be
avoided.

In extreme cases, Fig. 6(c), time-to-market pressures may
compel a new process to be developed and launched even be-
fore it is totally understood from a physics perspective. Even
if a new SPC/SQC model/system is developed or a pre-existing
model or system is used, it may not be feasible to measure its
quality characteristics (variables) within the time constraints of
the cycle time. In these intractable or infeasible cases, the prod-
uct is launched at a high risk for the manufacturing company.

The BM learning paradigm is applied to design a classifier
with high defect detection capacity to be deployed at the plant,
e.g., final model, Fig. 7. This data-driven method is applied to
eliminate manual or visual inspections, as well as to develop an
empirical-based QC system for the intractable and unfeasible
cases, Fig. 7(a).

In a process statistically under control, PMQ is applied to
detect those few DPMO (FN) not detected by the SPC/SQC
system to enable the creation of virtually defect-free processes
through perfect detection [22], Fig. 7(b). A full analysis of the
PMQ applications in [24, 27].
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Fig. 6: Traditional quality control scenarios.

4. The Problem Solving Strategy

IADLPRR-Identify, Acsensorize, Discover, Learn, Predict,
Redesign, Relearn—is the PMQ’s signature framework for value
creation Fig. 8. This 7-step problem solving strategy systemat-
ically drives innovation, process control, and improvement. It
helps to identify and select high value projects that can be for-
mulated as machine learning problems with a high likelihood
of success. For illustrative and numerical applications of these
steps refer to [1, 19, 22-27].
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Fig. 7: PMQ applications.

4.1. Identify

Project selection is the main goal of this step. The success
of a Quality 4.0 project relies primarily on the ability of man-
agement to identify and select high value/impact projects with
a high likelihood of success. Including “quick win” projects is
also important to develop momentum and create trust around
the new technologies.

The hype and success stories surrounding A/ has generated
interest from quality leaders in deploying an A/ initiative. But
according to recent surveys, 80-87% of projects never make
it into production [52, 58]. Improper project selection is the
primary cause of this discouraging statistic, as many of these
projects are ill-conditioned from the launch.

To address this challenge, an ad hoc approach was devel-
oped: a weighted project decision matrix for Quality 4.0 based
on 18 questions. To access these questions, readers are referred
to [24]. This approach evaluates many aspects of the potential
projects (value, feasibility, availability of data, strategy, exper-
tise, and time) to develop a prioritized portfolio. This activity
should be led by the Master Black Belt in collaboration with
a cross-functional team with the domain knowledge of the ap-

plication, to ensure Black and Green Belts are working on the
right projects.

4.2. Acsensorize

To generate the capability of observing the process is the
main goal of this step. PMQ proposes to acsensorize' (i.e., ob-
serve) the system to generate the raw empirical data. The level
of difficulty in the Identify phase in Figure 8 is also influenced
by the availability and observability of data. Assessment entails
enlisting all the available data streams that an existing process
(MRL > 5) may have, or is possible to have, for a process that
has not yet been deployed (MRL < 5). Sensors could pertain to
a specific stage in a manufacturing process, or the process in its
entirety. In either scenario, sensors should cover various sensing
modalities and aspects with minimum, but non-zero, overlap to
ensure some redundancy.

Sensors add complexity, computational, and archival burden
on the system. It’s thus imperative to make a judicious choice of
sensors. Some observable physical parameters like dimension,
current, voltage, temperature, pressure, etc. could be sensed
directly. Non-observable parameters could be inferred from a
combination of observable ones, as in soft sensors [28]. The
best sensors and inference methods are the ones that have max-
imum separation between signal and noise subspaces and con-
tain sufficient discriminative capacity.

Data collected could be streamed wirelessly if the band-
width requirement is low enough. A true wireless sensor how-
ever, is the one that either has onboard energy source or
could harvest energy. Once collected, data should be commu-
nicated using non-proprietary standard protocols. Every equip-
ment and transducer manufacturer today has their own method
of choice, which makes it nearly impossible for the customer
to integrate equipments from various vendors. To avoid this,
it is strongly recommended to store data in standard architec-
tures in databases and open format binary files. Note, non-
proprietary and open formats should not be confused with un-
encrypted/unsecured.

4.3. Discover

Feature creation and data labeling are the main goals of this
step. Feature engineering is one of the most important steps for
machine learning. Features are low dimensional representations
of data [12]. Their origins are traced back to a data set in which
the readings are usually vertically and horizontally fragmented.
Then, features are extracted and transformed into a vertical rep-
resentation to create the matrix with the training set, Fig. 9.

For the time-series domain with one measured parameter,
features are based on statistical moments, amplitude, and en-
tropy. For the frequency domain, the most important features

' Act of adding a multitude of dissimilar sensors, generally of a variety of
sensing modalities, to an existing system that may or may not already have
sensors. Acsensorizing plays a significant role in big data research and machine
learning.
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are based on the power spectrum, spectral information, and en-
tropy. For the combination of time-frequency domain, features
are based on energy, instantaneous frequency, and entropy, sta-
tistical equations in [12]. For image processing, shape, color,
and texture are good descriptors [48].

Data labeling is the process of assigning classes to each sam-
ple so that MLA can learn from it. Usually human intelligence is
required to label the data. The combination of the features and
labels generates the learning data set, Fig. 10.

Sample Featurel Feature2 Feature3 . Featuren| Label

1 0.57 -0.88 1 086 051  -101 -1.03 0
2 0.17 0.17 0.25 0.03 0.67 0.39 0.09 1
3 111 1.26 11 131 1.42 117 115 0

0.24 0.18 03 0.36 0.32 0.55 0.22 0
. -1.56 -1.15 -33 -152 <134 -1.27 -1.24 1
. -1.73 -1.56 -1.47 -152 <155 -1.44 -1.37 0
m -0.41 0.5 -0.52 014 046 -033 -0.23 1

Fig. 10: Learning data
4.4. Learn

Classifier development is the main goal of this step. The clas-
sifier uses real-time observational data to virtually project each
manufactured item into a hyper-dimensional space where those
rare quality events can be detected. Manufacturing systems are

dynamic and complex entities that pose specific challenges that
must be understood and addressed from a technical perspec-
tive. General insights from other domains where prediction is
the main goal (e.g., Netflix recommendation system) tend not
to effectively transfer into manufacturing.

Manufacturing-derived data for binary classification of qual-
ity poses the following challenges: (1) hyper-dimensional
feature spaces, including relevant, irrelevant, trivial, and re-
dundant, (2) highly/ultra unbalanced (minority/defective class
count < 1%), (3) mix of numerical and categorical variables
(i.e., nominal, ordinal or dichotomous), (4) different engineer-
ing scales, (5) incomplete data sets, and (6) time-dependency.
To effectively address these challenges, this section is bro-
ken down into three sub-activities majorly performed in a lab-
environment: (1) preprocessing, (2) classifier development, and
(3) deployment challenges.

4.4.1. Preprocessing

After feature creation, preprocessing is the next step for data
cleaning and improving. After the preprocessing, the training
set is obtained and presented to the MLA. This section provides
an overview of the general steps and tools used for this purpose.

o Exploratory data analysis, class distribution analy-
sis [40], feature distribution and pairwise analysis [50],
and outlier identification [41] help to develop an effec-
tive data set and learning strategy.

Transformation of numerical data, since most MLA
work internally with numerical data, it is important to
develop a strategy to deal with categorical variables [66]
(i.e., encode them in a numeric form). For binary fea-
tures, it is recommended to use effect coding (-1 and
1) instead of dummy coding (0 and 1) [54]. Moreover,
since features tend to have different engineering scales, it
is important to normalize or standardize the data before
presenting it to the algorithm. Feature scaling generally
speeds up learning and leads to faster convergence [36].
More insights about when to normalize or standardize
can be found in [38, 43].

Missing records analysis, it is important to understand
the missing data mechanism to effectively deal with the
missing data. Deleting rows or columns with missing
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Table 2: Characteristics of the MLA

Index MILA Linear Nonlinear Parametric =~ Nonparametric =~ Stable Unstable Gen Dis

1 SVM v v v v
2 LR v v v v
3 NB v'F v v v

4 KNN v v v v
5 ANN v vOEE v v
6 SVM(RBF) v v v v v
7 RF v v v v
8 RUSBoost v v v v

* with numeric features

** with a set of parameters of fixed size
Gen: Generative

Dis: Discriminative.

data is a widely used approach. This method is not ad-
vised unless the proportion of eliminated records is very
small (<5%) [37]. Imputing the missing records is a bet-
ter approach, this statistical technique refers to the pro-
cess of replacing missing data with guessed/estimated
values. Although imputation can be applied to preserve
all samples, it relies on specific assumptions often un-
realistic which can potentially bias results. A review of
imputation methods can be found in [6, 37, 51]. Finally,
permuting the rows and columns to maximize the infor-
mation is a different approach [20]. This method does not
induce any bias to the data set.

e Feature selection, eliminating irrelevant and redundant
features improves generalization, eases data collection
and information extraction, reduces computing times and
the effect of dimensionality [33, 47, 56, 62, 67, 70]. At
this stage, filter methods are applied for this task. For
highly/ultra unbalanced data containing only numerical
features, this separability index-based feature selection
method shows superior performance [21].

4.4.2. Classifier Development

To induce information extraction and engineering model
trust, the BM learning paradigm is founded on the principle of
parsimony [9]. Since there is no a priori distinction between
MLA [65], eight common and diverse MLA are proposed?, Ta-
ble 2. Due to the high conformance rate in manufacturing, bi-
nary classification of quality data sets tend to be highly/ultra un-
balanced. To address this challenge the MPCD is used to evalu-
ate classification performance and MLA hyperparameter tuning.
Due to the time effect, models are usually validated following
a time-ordered hold-out scheme. The training set is partitioned
in training, test, and holdout sets, where the latest set is used to
emulate deployment performance and compare it to the learn-
ing targets to demonstrate feasibility.

2 Authors acknowledge that some algorithms can change their taxonomy
(e.g., from parametric to non-parametric) depending upon their definition.

4.4.3. Deployment Challenges

In-lab solutions tend to be an overoptimistic representation
of predictive system capabilities, since lab data is generated un-
der highly controlled conditions. These conditions are likely not
entirely representative of the plant environment. Moreover, the
data snooping effect should be considered, as the MLA are very
powerful and can over-fit (i.e., learn spurious patterns [9]) the
training data, which would result in a low generalization perfor-
mance. For this reason, lab-generated data is useful for develop-
ing proof-of-concept models. Pilot runs are required to obtain
an unbiased generalization performance.

4.5. Predict

Prediction optimization is the main objective of this step.
Once a diverse group of classifiers has been developed, the next
natural step is to explore different combination schemes to im-
prove prediction. A Multiple Classifier System (MCS) is a pow-
erful solution to difficult pattern recognition problems, as they
usually outperform the best individual classifier [14]. To design
a MCS, an appropriate fusion method is required to combine the
individual classifier outputs optimally to determine the final de-
cision (classification). An ad hoc MPCD prediction optimiza-
tion algorithm is presented in [23]. It addresses four specific
questions: (1) which classifiers should be included? (2) how
should their predictions (labels) be combined? (3) which fit-
ness function should be optimized? and (4) which optimization
solver should be used?.

4.6. Redesign

Empirical knowledge discovery is the main goal of this step.
Data mining results are presented to the engineering team for
analysis and interpretation. These empirical studies can pro-
vide rich, deep contextual data valuable at understanding a phe-
nomenon, but cannot be generalized to establish prevalence of
the underlying physics of the system. To do so, experimen-
tal data must be generated. Therefore, extracted information is
used to generate useful hypotheses about possible connections
between the features and the quality of the product. Then, sta-
tistical analyses (e.g., randomized experiments) can be devised
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to establish causality to augment root-cause analyses and to find
optimal parameters to redesign the process. More insights about
this concept in [24] and a real case study in [22].

4.7. Relearn

Relearning strategy development is the main goal of this
step. Developing an in-lab model with the capacity to predict
well the items in the test set and satisfy the learning targets for
the project, is only the beginning since the model will usually
degrade after deployment.

In machine learning, the concept of drift [63, 64] embodies
the fact that the statistical distributions of the classes of which
the model is trying to predict, change over time in unforeseen
ways. This poses difficulties, as the predictive models assume
a static relationship between input and output variables. This
static assumption is rarely satisfied in manufacturing. The tran-
sient and novel sources of variations cause manufacturing sys-
tems to exhibit non-stationary data distributions. Consequently,
the prediction capability of a trained model tends to signifi-
cantly degrade overtime.

In Fig. 11(a), areal situation is presented, in which the model
exhibited less than 1.5% of « error (target set by the plant) in the
test set (lab environment) to satisfy the defect detection goals
(8 < 5%) of the project. Immediately after deployment, the o
error increased to 1.78%. A few days later, the « increased to
4%, an unacceptable FP rate for the plant. Although this model
exhibited good prediction ability and made it into production,
it was not a sustainable solution, and therefore, never created
value.

The main goal of relearning, is to keep the predictive sys-
tem in compliance with the restrictions set by the plant (a er-
ror), Fig. 11(b), and the detection goals (8 error). This is ac-
complished by ensuring that the algorithm is learning the new
statistical properties of both classes (good, defective). Contin-
ual learning or auto-adaptive learning is a fundamental concept
in Al that describes how the algorithms should autonomously
learn and adapt in production as new data with new patterns
comes in. A relearning scheme should include the following
four components:

(1) Learning strategy, (2) Relearning data set, (3) Relearn-
ing schedule, and (4) Monitoring system. The full relearning
scheme and insights presented in [24].

Figure 12 describes the online deployment and offline re-
learning concept. As described in this image, on deployment,
the predictive system uses the process data to monitor quality. If
a defective item is detected, it is sent to the rework/re-evaluation
station for a more detailed inspection. On the other hand, the of-
fline learning concept refers to the relearning schedule, which
can occur, for example, between shifts or every night. The
relearning procedure follows the learning strategy previously
defined—in the lab-by the data science team. The data gener-
ated from the rework/re-evaluation station along with the new
process-data generated during deployment is used to generate
the relearning data set. This strategy includes the ad hoc ana-
lytical tools for feature creation, model creation, and classifier
fusion.
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Fig. 11: Error analysis after deployment [24].
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Fig. 12: Online deployment and offline learning framework.

5. Green, Black and Master Black Belt Certifications in
Quality 4.0

Quality 4.0 is built on the statistical and managerial foun-
dations of the previous philosophies. It also follows a problem
solving paradigm that systematically drives innovation and im-
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provement. However, the new curriculum is not only based on W & a w
traditional statistics, it has been updated with machine learning, & 5}; % ?’73_ g &
optimization, and computer programming. =
Following the Six Sigma original color-convention, three dif-
ferent levels of competencies for Quality 4.0 certifications are z zw @ m
identified: Green, Black and Master Black Belts. Each color re- 7 g2 s (=3 £
quires different levels of knowledge, education, and experience 3 3 % % g’-
as described in Table 3. The curricula focuses on training engi- 2 - - =
neers, managers, and directors in PMQ, or broadly speaking, in =
how to generate value out of /BD and Al. © =
5.1. Green Belt Requirements g §_ & % P E g %_ & % E"<" g gé g S g T:«‘_
2. g el2 g e 2. 3§ @ =
2 g B c 28" B o 2 28 2 <2 =]
The Green Belt certificate holder must have a bachelor’s de- g3 E £gBElge =s5gk 5§27 £E| Q
gree in Science, Technology, Engineering or Math (STEM) with ST &g % g® &5 % =) . | B
at least one year of experience as a data scientist. This scien- 2EE_3 ¢ £g_F§ 5 8
tist should understand the meaning and implications of the 10 e 2 §- 2= q%“ 3 é— 23 R
V’s of IBD [1, 30, 60]. They must know how to create features e <5 mecle o< ol < o g
out of signals or images. They also must understand how to use EEGEE g2 & % g E g8 & % £ 2 § g §
and apply preprocessing techniques to effectively deal with in- % S258¢8 % S258¢8 G 235828 £
complete data sets and different engineering scales. Green Belts e®>” 8Eg°” 8E8°Y gE| °
must also demonstrate an understanding of basic machine learn- E g & & 5 g & & 5 g & = .
ing theory, including: model validation and feature selection =2g8 225828 E25z8 E| &
methods, bias-variance tradeoff, and generalization evaluation = ,gta g é' %_ & = ?R g é' %_ & = ?R g é' §_ & c,%' %
metrics. They must be able to train the nine MLA proposed by- ~ . @
and following the- BM learning paradigm. They also must have ii g E é § E § E "E § g
the ability to write the basic code to run these analyses and un- A A= g E:, E g
derstand each of the seven steps of the problem solving strat- 28 28 Elg® =
egy to partially contribute in the full solution cycle. They must & & = & & = ;g
document a project to demonstrate their ability to successfully e g e g g g.
apply at least three steps of the problem solving strategy. Data &2 &2 §_ &g %
generation and initial feasibility analyses are performed by a z
Green Belt. é%ggg é%’_g’gg} ggg 7 g
Se2sy feEt zax § E
5.2. Black Belt Requirements S 8.3z E S 5.3z g gz § 5
c¥:gE £¥:gs Ezf =
Black Belts are tech-savvy with the capacity to develop —in 2: > B8 % s~ E 5 % % g %
collaboration with a cross functional team— a sustainable solu- SEé:z= SE8z2= 22 =
tion from scratch. In addition to the Green Belt requirements,
Black Belts should understand the learning curves to guide the “ ~ - %T _gj
generation of data either to generate more data, or more fea- '2 %
tures, or both. They must be able to optimize prediction through 2
a decision combination scheme. They should be proficient in e
writing the deployment code—learning, relearning. Black Belts w2 o Wz o S
must be able to identify the driving features of the system to 5 § % g e § % g (21; g ;’ é
guide process redesign/optimization and augment human intel- ; g = % s g = % ; % "E cBT
ligence (i.e., trouble-shooting processes). They must have at Eaz % 2 %‘_ “§ %‘_
least two years of experience as data scientists and document s 83 ° 2 @ @ -
the application of the seven steps of the problem solving the- z . (%’ . ~ %
ory. 227 g27 g &
5 - - =
5.3. Master Black Belt Requirements =2 3 a3l &
Master Black Belts serve as mentors of cross-functional 28 2 2
teams guided by the Black Belt and act as a bridge between é
Black Belts and organization management. They are the leaders g
of the Identify stage, so they ensure the data science teams are I3
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working on high impact/value projects with high likelihood of
success. Master Black Belts must have the ability to write new
algorithms and libraries to customize the solutions. To demon-
strate this skill, one peer-reviewed paper must be published in
AL IBD or Quality 4.0 domain®. A Master Black Belt must have
at least three years of experience and hold Green and Black
Belts.

6. Conclusions

Two decades ago, GE’s introduction of the Six Sigma
program, pioneered the philosophy of quality in mass-
manufactured products. Today, Six Sigma Black Belts are solv-
ing complex problems across all business functional areas.
While the Six Sigma philosophy is still necessary, it cannot ef-
ficiently/effectively address some of the challenges posed by
industrial big data. Quality 4.0 is the next natural step in the
evolution of quality, which uses Six Sigma principles in con-
junction with big data methods. Strategically investing in Qual-
ity 4.0 training approaches is highly recommended for manu-
facturing companies to maintain competitiveness.

This paper presents a Quality 4.0 initiative and a certifica-
tion program for quality/manufacturing engineers, managers,
and directors. The proposed curriculum combines six areas
of knowledge (statistics, quality, manufacturing, programming,
learning, optimization) and a 7-step problem solving strategy
that must be mastered to obtain a certification.

Following the Six Sigma original color-convention, three dif-
ferent levels of competencies for Quality 4.0 certifications are
proposed: Green, Black and Master Black Belts. Each color re-
quires different levels of knowledge, education and experience.

Certified professionals in this initiative will be able to take
the lead in deploying a Quality 4.0 initiative. They will have
the capacity to identify engineering intractable problems that
can be formulated as machine learning—binary classification—
problems and successfully solve them.

From a career growth perspective, obtaining a Black or a
Master Black Belt certification, is an efficient and effective way
to advance to new professional levels.

Similar to the adoption of Six Sigma at GE two decades ago,
early adopters of Quality 4.0 will join the circle of the most
influential manufacturing companies in the world and position
themselves for success. This paper offers a vision of how to
launch a Quality 4.0 initiative.

A final consideration with respect to deep learning is worth
mentioning. Since most of today’s problems can be more ef-
fectively solved by simple machine learning algorithms rather
than deep learning [7], the problem solving strategy is based
on machine learning. Therefore, if a problem is more suitable
for deep learning, not all steps must be applied. For example,
the discover step is embedded in the deep learning architecture;
however, the fundamental concepts of the Quality 4.0 paradigm
remain the same.

3 This publication does not necessarily need to include the seven steps of the
problem solving strategy, since that is a Black Belt requirement

References

[1] Abell, J.A., Chakraborty, D., Escobar, C.A., Im, K.H., Wegner, D.M.,

Wincek, M.A., 2017. Big Data Driven Manufacturing — Process-

Monitoring-for-Quality Philosophy. ASME J of Manufacturing Science

and Eng on Data Science-Enhanced Manufacturing 139.

Antony, J., Dempsey, M., Brennan, A., Farrington, T., Cudney, E., 2019.

An Evaluation into the Limitations and Emerging Trends of Six Sigma: An

Empirical Study . The TQM Journal 31, 205-221.

Armstrong, K., Parmelee, L., Santifort, S., Burley, J., Van Fleet, J., 2018.

Preparing tomorrow’s workforce for the fourth industrial revolution for

business: A framework for action.

ASQ-b , 2020. Six Sigma Belts, Executives and Champions — What

Does it All Mean? URL: https://asq.org/quality-resources/

six-sigma/belts-executives-champions.

[5]1 ASQ-e , 2020. The Difference Certification Makes.

https://asq.org/quality-resources/six-sigma/

belts-executives-champions#CertDifference.

Barnard, J., Meng, X.L., 1999. Applications of multiple imputation in med-

ical studies: from aids to nhanes. Statistical methods in medical research

8, 17-36.

Bathaee, Y., 2017. The artificial intelligence black box and the failure of

intent and causation. Harv. JL & Tech. 31, 889.

[8] Belfiore, M., 2016. Automation opportunities abound for qual-
ity inspections. Automation World. URL: https://wuw.
automationworld.com/products/software/article/13315584/
automation-opportunities-abound-for-quality-inspections.

[91 Burnham, K.P., Anderson, D.R., 2003. Model Selection and Multimodel
Inference: a Practical Information-Theoretic Approach. Springer Science
& Business Media.

[10] Bzdok, D., Altman, N., Krzywinski, M., 2018. Points of significance:
statistics versus machine learning.

[11] Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in:
Proceedings of the 22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pp. 785-794.

[12] Christ, M., Kempa-Liehr, A.W., Feindt, M., 2016. Distributed and parallel

time series feature extraction for industrial big data applications. arXiv

preprint arXiv:1610.07717 .

Christopher, M., Rutherford, C., 2004. Creating supply chain resilience

through agile six sigma. Critical eye 7, 24-28.

[14] Clemen, R.T., 1989. Combining forecasts: A review and annotated bibli-

ography. International journal of forecasting 5, 559-583.

Dan, J., 2017. Quality 4.0 fresh thinking for quality in the digital era.

Quality Digest.

[16] De Carlo N, 2007. The complete idiot’s guide to lean six sigma. Break-
through Management Group, New York.

[17] De Mast, J., Lokkerbol, J., 2012. An Analysis of the Six Sigma DMAIC
Method from the Perspective of Problem Solving. Int J of Production Eco-
nomics 139, 604-614.

[18] Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T., 2014. Neural Net-
work Design. Martin Hagan.

[19] Escobar, C.A., Abell, J.A., Hernindez-de Menéndez, M., Morales-
Menendez, R., 2018a. Process-Monitoring-for-Quality — Big Models.
Procedia Manufacturing 26, 1167-1179.

[20] Escobar, C.A., Arinez, J., Macias, D., Morales-Menendez, R., 2020a.
Learning with incomplete data. To appear in the Conference Proceedings
of IEEE BigData .

[21] Escobar, C.A., Arinez, J., Macias, D., Morales-Menendez, R., 2020b. A
separability-based feature selection method for highly unbalanced binary
data. To apper in International Journal on Interactive Design and Manufac-
turing .

[22] Escobar, C.A., Arinez, J., Morales-Menendez, R., 2020c.  Process-
Monitoring-for-Quality—A Step Forward in the Zero Defects Vi-
sion, in: SAE Technical Paper. URL: https://doi.org/10.4271/
2020-01-1302, doi:10.4271/2020-01-1302.

[23] Escobar, C.A., Macias, D., Hernidndez-de Menéndez, M., Morales-
Menendez, R., 2021a. Process monitoring for quality — multiple classifier

S

3

[4

URL:

[6

[7

(13

[15



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[391

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

Carlos A. Escobar et al. / Procedia Manufacturing 53 (2021) 748-759

system for highly unbalanced data. Studies in Big Data, Springer .
Escobar, C.A., McGovern, M., Morales-Menendez, R., 2021b. Quality 4.0
— a review of big data challenges in manufacturing. To Appear in the
Journal of Intelligent Manufacturing .

Escobar, C.A., Morales-Menendez, R., 2019a. Process-monitoring-for-
quality—a model selection criterion for 11-regularized logistic regression.
Procedia Manufacturing 34, 832-839.

Escobar, C.A., Morales-Menendez, R., 2019b. Process-monitoring-for-
quality—a model selection criterion for support vector machine. Procedia
Manufacturing 34, 1010-1017.

Escobar, C.A., Wincek, M.A., Chakraborty, D., Morales-Menendez, R.,
2018b. Process-Monitoring-for-Quality — Applications. Manufacturing
Letters 16, 14-17.

EY; Oxford, A., 2019. Sensors as drivers of industry 4.0 -
a study on germany, switzerland and austria. URL: https:
//wwu.oxan.com/insights/client-thought-leadership/
ey-sensors-as-drivers-of-industry-40/.

Fawcett, T., 2006. An Introduction to ROC Analysis. Pattern Recognition
Letters 27, 861-874.

Fernando, L., 2017. 7 v's of big data. URL: http:
//blogsofdatawarehousing.blogspot.com/2017/01/
7-vs-of-big-data.html.

Ghias, S., 2020. Should i get a six sigma black belt? Investope-
dia. URL: https://www.investopedia.com/articles/investing/
102014/guide-six-sigma-black-belt.asp.

Goasduff, L., 2020. 2 megatrends dominate the gartner hype cycle for ar-
tificial intelligence, 2020. Gartner. URL: https://www.gartner.com/
smarterwithgartner/.

Hall, M., 2000. Correlation-based Feature Selection of Discrete and Nu-
meric Class Machine Learning, in: Proc of the 17" Int Conf on Machine
Learning, University of Waikato. pp. 359-366.

Hansen, M.C., 2019. Salary survey 2019: The complete report. Quality
Progress 52.

INCOSE, 2020. Certification program history. URL: https:
//wwu.incose.org/systems-engineering-certification/
certification-program-history. accessed on:.

Toffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift, in: International Con-
ference on Machine Learning, pp. 448—456.

Jakobsen, J.C., Gluud, C., Wetterslev, J., Winkel, P.,, 2017. When and
how should multiple imputation be esed for handling missing data in ran-
domised clinical trials—a practical guide with flowcharts. BMC medical
research methodology 17, 162.

Juszczak, P., Tax, D., Duin, R.P., 2002. Feature scaling in support vector
data description, in: Proc. asci, Citeseer. pp. 95-102.

Kosowatz, J., 2018. Salaries are up for mechanical engineers. The Ameri-
can Society of Mechanical Engineers.

Laurikkala, J., 2001. Improving identification of difficult small classes
by balancing class distribution, in: Conference on Artificial Intelligence
in Medicine in Europe, Springer. pp. 63—66.

Maimon, O., Rokach, L., 2005. Data mining and knowledge discovery
handbook .

Marr, B., 2017. The biggest challenges facing artificial in-
telligence (ai) in business and society. 13th  July, available
at: https://www. forbes. com/sites/bernardmarr/2017/07/13/the-biggest-
challengesfacing-artificial-intelligence-ai-in-business-andsociety/3 .
Mohamad, I.B., Usman, D., 2013. Standardization and its Effects on K-
means Clustering Algorithm. Research J of Applied Sciences, Eng and
Technology 6, 3299-3303.

Montgomery, D.C., 2014. Big data and the quality profession. Quality and
Reliability Engineering International 30, 447-447.

Muro, M., Whiton, J., Maxim, R., 2019. What jobs are affected by ai?:
better-paid, better-educated workers face the most exposure.

NewVantage Partners, L., 2019. Big data and ai executive survey 2019:
Data and innovation how big data and ai are accelerating business transfor-
mation.

Nicodemus, K., Malley, J., 2009. Predictor Correlation Impacts Machine
Learning Algorithms: Implications for Genomic Studies. Bioinformatics

[49]

[50

[51]

[52]

[63

[64]
[65]

[66

[67]

(68

759

25, 1884-1890.

de Oliveira, M.S., Betting, L.E., Mory, S.B., Cendes, F., Castellano, G.,
2013. Texture analysis of magnetic resonance images of patients with ju-
venile myoclonic epilepsy. Epilepsy & Behavior 27, 22-28.

Ortega, M., 2018. Cio survey: Top 3 challenges adopting ai and how to
overcome them. Databricks. URL: https://databricks.com/.

Park, S.H., Fiirnkranz, J., 2007. Efficient pairwise classification, in: Euro-
pean Conference on Machine Learning, Springer. pp. 658-665.

Rahman, M.M., Davis, D.N., 2013. Machine learning-based missing value
imputation method for clinical datasets, in: IAENG transactions on engi-
neering technologies. Springer, pp. 245-257.

Research, G., 2018. Predicts 2019: Data and
alytics strategy. URL: https://emtemp.gcom.
cloud/ngw/globalassets/en/doc/documents/
374107-predicts-2019-data-and-analytics-strategy.pdf.
salary.com, 2020. Six sigma black belt salary in the united states.
URL: https://www.salary.com/research/salary/alternate/
six-sigma-black-belt-salary.

Sarle, W.S., 2002. comp.ai.neural-nets faq, part 2 of 7: Learning. fags.org.
URL: http://wuw.faqs.org/fags/ai-faqg/neural-nets/part2/.
See, J.E., 2015. Visual inspection reliability for precision manufactured
parts. Human factors 57, 1427-1442.

Shao, C., Paynabar, K., Kim, T., Jin, J., Hu, S., Spicer, J., Wang, H., Abell,
J., 2013. Feature Selection for Manufacturing Process Monitoring using
Cross-Validation. J. of Manufacturing Systems 10.

Shmueli, G., 2010. To Explain or to Predict? Statistical Science , 289-310.
STAFF, V., 2019. Why do 87% of data science projects never make it into
production? URL: https://venturebeat.com/.

Staley, O., 2019. Whatever happened to six sigma?
Quartz at  Work. URL: https://qz.com/work/1635960/
whatever-happened-to-six-sigma/.

Uddin, MLF,, Gupta, N., et al., 2014. Seven v’s of big data understanding
big data to extract value, in: Proceedings of the 2014 zone 1 conference of
the American Society for Engineering Education, IEEE. pp. 1-5.
University, V., 2020. Six sigma or big data? why not both? On-
line. URL: https://www.villanovau.com/resources/six-sigma/
six-sigma-or-big-data-why-not-both/.

Wang, F., Yang, Y., Lv, X, Xu, J,, Li, L., 2014. Feature Selection using
Feature Ranking, Correlation Analysis and Chaotic Binary Particle Swarm
Optimization, in: 5" Int Conf on Software Eng and Service Science, pp.
305-309.

Wang, H., Abraham, Z., 2015. Concept drift detection for streaming data,
in: 2015 International Joint Conference on Neural Networks (IJCNN),
IEEE. pp. 1-9.

Webb, G.I, Lee, L.K., Petitjean, F., Goethals, B., 2017. Understanding
concept drift. arXiv preprint arXiv:1704.00362 .

Wolpert, D.H., 1996. The Lack of a Priori Distinctions Between Learning
Algorithms. Neural Computation 8, 1341-1390.

Wright, M.N., Konig, I.R., 2019. Splitting on categorical predictors in
random forests. PeerJ 7, €6339.

Wu, S., Hu, Y., Wang, W., Feng, X., Shu, W., 2013. Application of Global
Optimization Methods for Feature Selection and Machine learning. Math-
ematical Problems in Eng .

Wauest, T., Irgens, C., Thoben, K., 2013. An approach to quality monitoring
in manufacturing using supervised machine learning on product state based
data. Journal of Intelligent Manufacturing, XX .

Yang, K., Basem, E., 2003. Design for Six Sigma: Roadmap to Product
Development. The McGraw-Hill Companies, Inc, New York.

Yu, L., Liu, H., 2003. Feature Selection for High-Dimensional Data: A
Fast Correlation-based Filter Solution, in: ICML, pp. 856-863.

an-



