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Preface

If you have been drawn to this book, you are most likely aware of the extraordinary
potential of using artificial intelligence in manufacturing, but you must also be
well aware of the challenges and concerns posed by this technology. We are
researchers from Amazon, Tecnologico de Monterrey, and General Motors, and
we have developed, published, and implemented novel technologies to solve real
problems and create value. In this book, we describe our experiences with the use
of artificial intelligence in the manufacturing sector; we discuss the challenges
we have faced and share our vision.

Today, the industrialization of artificial intelligence is a major megatrend, and
its application for quality control is one of the most cited priorities. Therefore,
manufacturing companies can competitively position themselves among the most
advanced and influential companies by successfully implementing Quality 4.0;
this will provide opportunities to quality professionals to become a leading force
in the industry. However, this is not an easy task because quality management
leaders often have difficulty developing a vision for Quality 4.0; they need to
learn the new technologies and paradigms to keep innovating and achieving pro-
fessional growth. In this book, we focus on applying machine learning techniques
to process-derived data for monitoring, controlling, predicting, and improving
the quality of discrete manufacturing systems. We have made a conscious effort
to keep the math and coding aspects at levels that are easily understandable for
most engineers. Thus, it is possible to focus more on the practical aspects of se-
lecting and solving engineering intractable problems through machine learning.
However, for an in-depth perspective of the mathematics and coding details of
machine learning, we recommend the following books: (1) Machine Learning:
A Probabilistic Perspective (2012) by Kevin P. Murphy, (2) An Introduction to
Statistical Learning: with Applications in R (2021) by Gareth James , Daniela
Witten , et al., and (3) Introduction to Machine Learning with Python: A Guide
for Data Scientists (2016) by Andreas C. Müller and Sarah Guido.

This book presents a Quality 4.0 initiative that was developed in the Manufac-
turing Systems Research Lab of General Motors supported by a novel Problem-
Solving Strategy, which evolved from the traditional Six Sigma cycle of design,
measure, analyze, improve, and control. We review the theoretical background
of the Quality 4.0 initiative and describe its concrete applications and new qual-
ity control paradigms. We also present several case studies and identify areas
of concern. This book will enable engineers without any coding knowledge to
develop intelligent predictive systems. Also, managers without any Artificial
Intelligence background will develop the capacity to identify valuable business
projects, and directors will be able to successfully deploy a business vision for
Quality 4.0.
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Introduction
Chapter Subtitle

ABSTRACT
The manufacturing industry plays a predominant role in boosting a country’s economy.
Smart Manufacturing has ushered in a new era of using technological innovations in the
manufacturing process; the processes involved exhibit rapidly increasing complexities.
Many of the founding techniques and paradigms of traditional quality control methods
are not able to handle all these dynamics. Therefore, in the last decade, traditional qual-
ity management philosophies have plateaued, and quality control professionals started
stagnating with little innovation to offer. Today, the industrialization of Artificial Intel-
ligence (AI) is a megatrend that dominates the business landscape, and it requires the
attention of industry managers. The application of AI to manufacturing systems for qual-
ity control and improvement drastically improves upon the Zero-Defects vision proposed
by Crosby. Consequently, the industrialization of AI offers an excellent opportunity for
quality professionals to return to their lead roles in the manufacturing sector.

KEYWORDS
Smart manufacturing, Quality control, Machine learning

1.1 MOTIVATION

The manufacturing industry plays a predominant role in boosting a country’s
economy. The added value and employment contribution to the global Gross
Domestic Product (GDP) have not changed significantly since since 1970 in
developing countries [63]. At present, manufacturing is the driving economic
force of the most advanced countries [122]. The global market for manufacturing
is forecasted to grow from US $ 649.8 billion in 2020 to US $ 732.2 billion in
2027 [56]. The nations with high manufacturing output [158] also have the
highest GDP, [69]. Manufacturing increases the living standards by increasing
the purchasing power of the people living in industrialized societies. Advanced
manufacturing companies are leaders in innovation, productivity, exports, and
research and development. Most technological advances have originated in these
companies [162].

In the US, for every dollar of domestic manufacturing value-added, another
$3.60 of economic activity is generated elsewhere across the economy and
for every manufacturing job; there are 3.4 jobs created in non-manufacturing
industries. No other sector comes close to these numbers, [59]. Today, China is
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the world’s largest manufacturing economy and it is considered one of the most
competitive nations in the world, this sector helped China to rise as a global
economic superpower, [50, 83]. In today’s global competitive market, delivering
high quality products is a top priority for most manufacturing companies. High
quality improves customer retention, builds brand trust, and boosts return-on-
investments, enabling business growth, [19].

Quality has been defined variously by researchers and experts. The American
Society of Quality (ASQ) defines a quality item as a product or service that is
free of deficiencies [3]. Joseph Juran defines quality as “fitness for use [98].”
According to Joseph Juran, quality begins by understanding who the customers
are and how and why they would use a product. This information is then used
to drive all improvement activities and develop a customer-focused business
strategy. A more extensive definition of quality considers eight dimensions: (1)
performance, (2) features, (3) reliability, (4) conformance, (5) durability, (6)
serviceability, (7) aesthetics, and (8) perceived quality [53]. Philip Crosby states
that good, bad, high, and low quality are relative concepts, and the meaning of
quality is conformance to requirements. For the ideas conveyed in this book,
Crosby’s definition of quality was the most appropriate.

Crosby also introduced the concept of zero defects in manufacturing [25];
it was one of the four absolutes of quality management [26]. However, when
Crosby proposed the idea of zero defects in 1980, the manufacturing process
was labor intensive and depended largely on the skills of human operators.
Because of the technological limitations of the time, the zero-defects concept
remained mainly a managerial tool that acknowledged the importance of quality
and motivated employees to do their best to reach this goal. The creation of
unrealistic standards was criticized by E. Deming and J. Juran [11, 71]1. In this
context, Crosby stated, “It is merely setting performance standards that no one
can misunderstand [25].”

Broadly speaking, quality systems are divided into three categories: Quality
control (QC), Quality Assurance (QA), and Quality Improvement (QI). QC is
the process of applying statistical and analytical techniques to determine if a
manufactured item conforms to the design specifications. According to ASQ, QC
involves operational techniques and activities used to fulfill quality requirements.
QA refers to all the planned and systematic activities implemented within the
quality system that can be demonstrated to provide confidence that a product or
service will fulfill the quality requirements [3]. QI is the process of constantly
identifying projects aimed at creating breakthrough levels of performance by
eliminating defects. QI requires a good managerial team that has the ability
to identify relevant projects, create a successful team, and allocate the required
resources. The three synergized systems (QC, QA, & QI) have helped create a
high conformance production environment. Therefore, in today’s manufacturing

1. "Eliminate slogans, exhortations, and targets for the work force asking for zero defects and new
levels of productivity.” This is clearly aimed at zero defects.
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world, most mature companies operate their processes at very low Defects Per
Million Opportunities (DPMO).

Modern manufacturing systems have ensured that defects are rarely gener-
ated; however, quality standards need to be further improved because customers
expect perfect quality. Intense global competition has led to low profit mar-
gins [73, 37]; therefore, warranties can make the difference between profit and
loss [13]. Moreover, customers now use the Internet and social media tools
(e.g., Google product review, YouTube, Facebook, and Instagram) to share their
product experiences, which can potentially go viral in a couple of days or even
hours; this leaves organizations with little flexibility to recover from their mis-
takes [128]. Thus, a single negative customer experience can immediately
affect a company’s reputation and can influence loyal customers [68]. Today,
the introduction of Artificial Intelligence (AI) into the manufacturing process
vastly improves upon the zero-defects vision promoted by Crosby more than
four decades ago. This book presents a Quality 4.0 initiative2 aimed at driving
AI-based innovation. This initiative improves upon the zero-defects vision from
a technological perspective.

1.2 SMART MANUFACTURING

Early adopters of Smart Manufacturing (SM) will inevitably dominate the busi-
ness landscape. The clean energy Smart Manufacturing Innovation Institute
(CESMII) [144] defines SM as “leveraging digital transformation, through the
use of new Industry 4.0 technologies, within Manufacturing to drive perfor-
mance, increase quality, reduce cost and scrap, improve reliability and agility,
and save energy.” The term “smart” refers to the transformation of the US
manufacturing sector, which results from the upending of traditional business,
organizational, operational, and market structures by digitalization. The Na-
tional Institute of Standards and Technology (NIST) defines SM as “a vision
fully-integrated, collaborative manufacturing systems that respond in real-time
to meet changing demands and conditions in the factory, in the supply network,
and in customer needs” [103]. The term SM was initially introduced at the
National Science Foundation workshop on cyberInfrastructure in 2006 [30]. Re-
gardless of the particularities of the definition, SM helps manufacturers increase
their efficiency, stay ahead of competition, and explore new business models and
practices.

Today, SM has gained interest worldwide and is part of the comprehen-
sive economic development strategy of several countries. In 2013, the German
government started the Industry 4.0 initiative [72, 160] with the objective of
positioning Germany’s manufacturing industry (with political support) as the
world leader in digitized production technologies. McKinsey defines Indus-

2. Merriam-Webster defines initiative as the power or opportunity to do something before others do
it. They also define it as a plan or program that is intended to solve a problem.
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try 4.0 as “digitization of the manufacturing sector, with embedded sensors in
virtually all product components and manufacturing equipment, ubiquitous cy-
berphysical systems, and analysis of all relevant data [157].” In 2015, China
presented its SM national strategy called “Made in China 2025.” This initia-
tive strives to secure China’s position as a global powerhouse among high-tech
industries [8, 64]. In the United States, the NIST published a paper in 2016
titled “Standards Landscape for Smart Manufacturing” to describe the standards
within and across three manufacturing lifecycle dimensions: product, produc-
tion system, and business [86]. CESMII was also formed the same year to
increase its manufacturing competitiveness and to create sustainable research
and development infrastructures [145]. In 2017, the Singapore Economic De-
velopment Board in partnership with a network of leading technology companies
and academic experts developed the Smart Industry Readiness Index (SIRI) tool
and the prioritization matrix—a suite of frameworks and tools to help manufac-
turers start, scale, and sustain their manufacturing transformation journeys in the
country. SIRI is founded on three building blocks of Industry 4.0: technology,
process, and organization [127]. The prioritization matrix is a tool used to eval-
uate digital maturity and to identify potential gaps in the digital transformation.
Finally, in 2019, the Council on Competitiveness, University of California, Los
Angeles, and the CESMII published a program that focused on leveraging the
democratization of SM innovation in the United States [145].

1.2.1 Technologies

The new disruptive technologies of the Fourth Industrial Revolution are moving
forward the frontiers of manufacturing sciences. According to Mckinsey, in
the previous industrial revolutions, most of the value was created by upgrading
manufacturing assets. However, the value and innovations in the Fourth Indus-
trial Revolution are not necessarily linked to major machinery upgrades [157];
instead, innovation comes from the cognitive computing capabilities that drive
disruptive technologies [20, 137, 163, 143, 78] such as AI, Industrial Internet of
Things (IIoT), and Cloud Storage and Computing (CSC)3(see Fig. 1.1). Their
combination enables a smart and connected manufacturing environment

Smart Manufacturing

- Technologies

Artificial

Intelligence

Industrial 

Internet of

Things

Industrial 

Internet of

Things

FIGURE 1.1 Smart Manufacturing enabling technologies.

3. This list is not a comprehensive review of the technologies in SM, instead, it is shortened list of
the most relevant technologies discussed in this book and the most cited technologies.
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1.2.2 Building Blocks

Cyberphysical Systems (CPS), data-driven approaches, real-time iterations , self-
learning adaptations and executions are the most important building blocks of
SM (see Fig. 1.2).

Smart Manufacturing

- Building Blocks

Cyberphysical 

Systems

Self-Learning

Adaptations

Excecution

Data-Driven

Approaches

Real-Time

Interactions

FIGURE 1.2 Smart manufacturing building blocks.

A CPS integrates the aforementioned technologies to fuse the virtual world
with the physical world to develop smart solutions that enable SM. According
to [134], “CPS are integrations of computation, networking, and physical pro-
cesses. Embedded computers and networks monitor and control the physical
processes, with feedback loops where physical processes affect computations
and vice versa.” The concept of CPS is broad and not limited by a particular
implementation or application. Instead, they focus on the fundamental intel-
lectual problem of conjoining traditional engineering models and methods with
computer science fundamentals and Machine Learning Algorithms (MLA) [81].
In the context of QC, cyberphysical integration and real-time interactions were
developed to optimize, automate, monitor, and control processes [84]. Although
the origin of CPS is traced back to 2006 [55], CPS application in the manufac-
turing sector is still in its developmental stage [137], and it poses a significant
intellectual challenge for the manufacturing industry. It is a top research priority
in the United States [109].

Data-driven approaches are also part of the building blocks of the SM model.
The new generation of manufacturing is changing from engineering-based to
a combination of data-driven and engineering-based approaches [137, 165,
75]. For example, at the process level, high data volumes enable data-driven
knowledge discovery. Preconceived engineering notions are used to observe
the process using connected devices, such as smart sensors, and they generate
high volumes of relevant observational data4, which is further analyzed from an
engineering perspective. This analysis helps to generate a hypothesis about the
underlying physics of the system and guide randomized experiments to generate
experimental data [94] and augment engineering knowledge (see Fig. 1.3).

4. Collected data based on what is observed. Not generated to find true cause-and-effect relation-
ships [92].
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FIGURE 1.3 Observational-data-driven- and engineering-based augmented knowledge.

Data-driven modeling is another approach that is growing exponentially.
Enabled by the high data volumes, new modeling techniques, and increased
computer power, data-driven modeling augments often even replace engineering-
and physics-based models. It is an efficient approach to derive models from
patterns and signals in the data itself, as opposed to being limited to making
assumptions about the form of the real-world model.

Data-driven modeling allows engineers to automate a whole range of pro-
cesses faster. Although success stories are emerging in which data-driven mod-
eling has contributed to significant efficiency gains [54, 102, 2, 146], most in-
dustrial data sciences fall short of expectations. The application of data science
to solve hard industry problems is currently a complicated exercise . There-
fore, it is always important to use engineering knowledge to avoid making the
wrong decisions driven by wrong models. Figure 1.4 shows the most relevant
applications based on data-driven modeling.
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FIGURE 1.4 Observational-data-driven- and engineering-based modeling applications.

• Detection. For this application, a model is developed to detect defective
items. Quality patterns of the process data are learned by MLA to identify
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the defective items while they are manufactured. For example, the ultrasonic
metal welding of the battery tabs process generates several signals such as
acoustic and linear variable differential transformer signals. MLA learns the
good quality signals and the defective signals and applies a trained classifier
to detect the signals in real-time defective welds [1, 39].

• Prediction. For this application, a model is developed to predict future events 
based on the data generated early in the process. For example, the Body-
In-White (BIW) dimensional variability control is one of the most relevant 
challenges for multistage manufacturing QC. Undetected significant 
devia-tions from the nominal are propagate and amplified downstream 
generating quality-related and difficult-to-fix problems in the final assembly. 
Recent ad-vances in vision and information systems have enabled real-time 
monitoring systems. Hundreds or even thousands of under-body 
dimensional deviations are collected, and the quality patterns are learned by 
MLA [44, 110]. Then, a regression or classification model is developed for 
early prediction in the process and for potential downstream problems, such 
as significant misalign-ment. It will be expensive and time-consuming to fix 
them later because the number of work-in-process or finished items may be 
too large.

• Automation. For this application, a model is developed to replace the 
monotonous and trivial tasks, such as object detection. Usually, human 
inspectors perform visual quality checks on the production line. These in-
spections are often subject to the operators’ inherent biases and tiredness 
that result from the repetitive nature of the task; therefore, their accuracy in 
manufacturing is approximately 80 % [123]. A model that is trained based 
on Deep Learning (DL) replaces human vision inspections. For example, an 
operator visually checks each transmission to ensure that a critical component 
is present. Although a missing event rarely occurs, the business implications 
of a missing event are critical. DL-based technologies have shown better 
accuracy than human performance [104, 10].

• Optimization. For this application, a model is developed to optimize the pa-
rameters of a machine. Then, the optimized parameters increase the process 
performance and quality. For example, a tungsten inert gas welding machine 
has 15 parameters, such as initial current, duty cycle, and pulse frequency, 
which the user needs to set to optimize the welding strength. The parameter 
combinations are infinite. An MLA is applied to learn the linear and non-
linear relationships between the input parameters and the process outcome. 
The regression model is used to predict the welding strength of the different 
combinations, which enables virtual process optimization. Superior predicted 
combinations are then physically studied to optimize the process.    Al-
though traditional statistical methods, such as Response Surface Methodology 
(RSM) [97], have been widely applied to perform this task, Artificial Neural 
Networks (ANN) have consistently shown superior performances [35, 76].

• Augmentation of human intelligence. For this application, a model is de-
veloped to perform sensitivity analyses. Complex linear and nonlinear rela-
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tionships between the independent variables and the variables of interest are
learned by MLA. Then, the trained model is interrogated to expedite trou-
bleshooting. For example, in the BIW application, if a multioutput regression
model [12] has accurately learned the relationships between many under-
body dimensional deviations and many final assembly deviations, then it can
be used to calibrate the process [44]. During the troubleshooting analysis,
dimensional engineers can predict or virtually evaluate the effect on the final
assembly of potential process adjustments by inputting the observed under-
body deviations derived from the adjustments into the model. This is a valu-
able tool to keep the process in good operating conditions because it is very
difficult for engineers—and even for those using traditional statistical meth-
ods—to learn nonlinear relationships between many inputs and many outputs.
The model helps to manage the complexities of real-time interactions using
innovative IIoT solutions [95, 139] and promotes the deployment of sensors
to generate real-time streamed data from each product ( 100 % observation
inspection , tracking, and monitoring) and across its life cycle [137, 105, 74].
The systematic computational analysis of data enables the creation of intel-
ligence in all the aspects of manufacturing [136, 77] . Intelligence comes
in the form of strategic actions, predictions, optimizations, simulations, and
smart monitoring and control. For example, the manufacturing processes are
monitored in real-time, which enables adjustments and actions in a timely
manner to control the product quality. Moreover, streamed data support in the
rapid diagnosis of the root causes of faulty operating conditions [136, 163].

Advanced data-driven systems are capable of self-learning and adapting to
new sources of variations, they can self-execute [136]. Self-learning allows the
system to keep improving without intensive human intervention as more data
become available. Usually, systems are deployed after the patterns of interest
are learned at some level of accuracy. This feature allows the deployed system to
keep learning the same patterns to improve accuracy. However, manufacturing
systems are constantly exposed to new sources of variations that generate new
patterns. The developed system needs to have the capacity to automatically learn
new patterns, and it should automatically execute.

1.2.3 Characteristics

Beyond disruptive technologies, CBS, data-driven approaches, and real-time
interactions [24, 147], there are eight relevant SM characteristics with respect to
business and tactics, namely, flat, sustainable, agile, people oriented, profitable,
innovative, current, and competitive.

• Flat. In this characteristic, the layers of management between the top and
the bottom of the organizational pyramid are removed. In SM, data are
democratized and analyzed using smart technologies to extract information
and make decisions; this helps reduce or eliminate the need for reports and
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FIGURE 1.5 Smart manufacturing characteristics.

meetings. Employees are empowered by data and algorithms.
• Sustainable. This characteristic includes topics, such as fair trade, safety,

social and environmental responsibilities, and work practices. Companies
have set up traceability in their supply chains to provide the information
required to prove that suppliers are operating in a sustainable and fair manner.
To develop a strong business strategy, company leaders recognize the need
for including people from diverse cultural backgrounds, genders, and races
[115]. Sustainability is also changing the way plants are designed, as is seen
in the case of Factory ZERO in Detroit, United States [57]. This modern
manufacturing plant supports the GM goal to completely phase out vehicles
using internal combustion engines and to go carbon neutral at all facilities
worldwide by 2035 [36].

• Agile. This characteristic involves real-time data generation, collection, anal-
ysis, and interpretation, which enables faster decision-making by predicting
potential problems or by detecting them early in the process. This capa-
bility helps decision makers to respond early to changes and unforeseeable
challenges, which decreases wastage and increases efficiency.

• People oriented. This characteristic helps smart technologies help workers
perform better at their jobs. Although 40 % of the current jobs may be
replaced by automation and AI technologies by 2034 [118], the first jobs to
disappear are the monotonic, mortifying, and dehumanizing ones. AI is good
at learning these types of tasks; the handling of such limited tasks by machines
is known as narrow AI [48, 29]. Narrow AI will help to free human minds and
to take advantage of human intelligence to solve complex cognitive problems.
Therefore, in the coming decades, AI is expected to keep augmenting human
intelligence (not replace it) [31] and to create more jobs [28]. From the First*’
Industrial Revolution onward, technology has been used to create jobs that
require high levels of training and education [159, 90].

• Profitable. This characteristic implements SM techniques to increase pro-
ductivity and generate profits and growth. According to the MPI Group,
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most manufacturing leaders who implemented IIoT technologies attributed
their increase in profitability to these technologies [121]; their profitability
increased by 88%. Other factors supporting business growth also increased;
productivity, product quality, and customer satisfaction increased by 88%,
48%, and 43%, respectively [61, 67].

• Innovative. This characteristic accelerates innovation at all levels by the
democratization of data, and the application of smart technologies boosts
innovation at all levels of the company. Data-empowered employees engage in
continuously improving work practices and driving innovation. They improve
the product design, manufacturing process, and machine interfaces to develop
high-value products that are manufactured better, faster, and cheaper [144].

• Current. This characteristic helps develops an SM strategy. Companies do
not need to wait for new technology to be developed or perfected to launch
an SM initiative. They can be developed in-house or outsourced based on the
funding or readiness level of the company, but SM initiatives should be at the
core of the business strategy. However, relatively few companies have turned
the potential of SM into sustained action [147].

• Competitive. This characteristic helps manufacturing leaders to expect SM to
increase their competitiveness. According to Gartner, 84% of the surveyed
leaders see a range of actual or expected benefits from SM. The common de-
nominator is operational excellence founded on agility, flexibility, automation,
and optimization [147].

1.2.4 Research Areas

SM has emerged as a compelling topic for research scientists worldwide. Fig-
ure 1.6 shows the most relevant topics that move forward the frontiers of manufac-
turing science. All these areas are founded on the three disruptive technologies
previously discussed, namely, AI, IIoT, and CSC.
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FIGURE 1.6 SM research areas.

Cybersecurity. The connection between the digital and physical environments
poses a new challenge: cyberattacks. Information and machines can be
accessed or controlled remotely; therefore, attacks from adversaries aiming
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at industrial espionage and sabotage is a matter of concern [143].
Maintenance 4.0. Real-time data enable the new generation of maintenance:

predicted and optimized maintenance. Intelligent predictive systems are
developed for early detection and diagnosis of machine failures [18, 150, 34].
Streamed data are used to estimate the component’s remaining lifetime [125].
This prediction capability enables just-in-time maintenance [82].

Hyperautomation. This technology focuses on automating every process and
task that can be automated. Besides automating repetitive tasks, the robotic
process automation technology, which is a new robotics paradigm, focuses
on mimicking human behaviors to automate process-led and repetitive tasks;
these tasks include the more complex and long-running tasks that require
human intervention. According to Gartner, hyperautomation was the top
strategic technology trend in 2021 [107], and it could replace 40% of jobs
in 15 years [118], which would improve the life quality and morale of the
workers. Material handling in work-in-process units are tracked to deliver
the right material to the right machine at the right time in the most efficient
way. In-plant logistics is optimized using Radio Frequency Identification
(RFID) and Automated Guided Vehicle (AGV) technologies [85]. RFID sys-
tems automatically identify and track manufacturing items, and AGV enables
efficient transportation. Moreover, product traceability allows us to move for-
ward in the value adding process to track defective items that were generated
during production [164].

Smart scheduling. The connectivity and communication between the man-
ufacturing entities enable the development of optimal machine schedule
programs. Machine availability and real-time product statuses are used to
optimize the machinery usage and energy consumption [135]. To develop
production plans and optimal configurations, manufacturers use readily and
rapidly available data from supply chains, sales figures , and inventory are
used [129, 138].

Smart design. Product design involves shifting from engineering-based to
data-driven design. Internet data are used to improve designs and foster
new ideas [136]. New platforms, such as Google reviews, allow customer
to share their experiences first-hand. This increasing trend is leveraged by
manufacturers by selecting helpful online reviews [112].

Mass customization. Easy access to smartphones, social media, and design
applications allows modern customers to quickly and precisely fulfill their
requirements. Digital manufacturing enables companies to quickly and cost-
effectively meet customization demands [154]. Thus, manufacturers and
customers enjoy the new created value [141].
Today, companies are rapidly adopting SM technologies and paradigms to

preserve their competitiveness in highly globalized and competitive markets.
However, although technologies and practices have matured, their adoption has
not “crossed the chasm” and moved beyond the early adopters into the early
majority for wide adoption in the ecosystem.
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1.3 EVOLUTION OF MODERN QUALITY CONTROL IN MANUFAC-
TURING

In the United States, modern QC started a century ago with the statistician
W.A. Shewhart, who worked in Western Electric. Shewhart began focusing on
controlling processes using Statistical Quality Control (SQC) methods, which
made quality relevant not only for finished products but also for the processes
that manufactured them. After several years, Japanese manufacturers who were
influenced by W.E. Deming and J.M. Juran increased their market shares sig-
nificantly in the United States because of their superior quality. In response,
many CEOs of major firms took initiative to provide leadership to the quality
movement. Their responses not only emphasized employing SQC methods, but
also employed a quality management approach that encompassed an entire or-
ganization; this approach was known as Total Quality Management (TQM). A
few years later, B. Smith developed Six Sigma, a reactive approach to eliminate
defects from all processes by identifying and removing the main sources of vari-
ations. This approach was extended to the designs of products and processes
using the Design for Six Sigma process [71, 87, 88].

Traditional quality philosophies went through several evolutionary steps.
Each of them employed a scientific method in the form of problem solving [91].
Figure 1.7 describes the evolution of the traditional quality philosophies in the
modern quality movement along with their associated paradigms and Problem-
Solving Strategies.

FIGURE 1.7 Evolution of the problem solving strategy in modern quality movement.

A Problem-Solving Strategy is an iterative management method used in
business for controlling and improving the quality of products and processes,
resolving problems, discovering new engineering knowledge, and driving inno-
vation. It is the adaptation of the scientific method to the modern QC and was
promoted by Shewhart and Deming [91].

In today’s manufacturing world, most mature organizations have merged the
traditional QC philosophies and statistical techniques to create highly efficient
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QC, QA, and QI approaches. Process monitoring charts and acceptance sam-
pling methods have been widely implemented in manufacturing to set a process
capability index benchmark of Four Sigma [130, 124]. This sigma level gener-
ates 6210 DPMO [33, 51]. The necessity to generate and integrate data from the
whole value adding process and after-sales service into the QC approaches to
achieve the next sigma level (5𝜎, 233 DPMOs) was recognized early in [142].
Figure 1.8 illustrates the Four Sigma conformance rate using a normal distribu-
tion.

FIGURE 1.8 Four sigma conformance rate.

Although traditional quality philosophies based on statistics have raised man-
ufacturing standards to very high conformance levels, they have plateaued and are
limited in addressing the challenges posed in Manufacturing Big Data (MBD).

.

1.4 BREAKDOWN OF TRADITIONAL QUALITY CONTROL METHODS

SM is founded on processes that exhibit rapidly increasing complexities, hy-
perdimensional feature spaces, high data volumes, transient variation sources,
reduced lifetime, ultrahigh conformance, and non-Gaussian pseudo-chaotic be-
haviors. Most of the founding techniques and paradigms of traditional QC tools
cannot handle these dynamics [161]. Seven of the most relevant limitations
and differences of traditional quality philosophy techniques with respect to the
founding techniques and paradigms of the Fourth Industrial Revolution.5 are
discussed below [43].

• ANN. These networks have shown better predictive modeling and optimization
performance than RSM [76, 35]. According to the universal approximation
theorem, the feedforward ANN with one hidden layer containing sufficient
neurons can approximate any continuous function to a reasonable accuracy

5. The authors recognize that modern significant advances in ML techniques were developed by
the statistical community; therefore, this analysis is limited only to comparing the current state
of AI techniques, such as DL and ML, with the founding techniques of the traditional quality
philosophies [47, 133, 9].
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level [7, 32]. This provides an advantage over the limitations of the quadratic
models or cubic models used by RSM. Therefore, MLA are better at learning
complicated nonlinear relationships.

• Modeling. Machine Learning (ML) models are designed to make the most
accurate predictions possible. Statistical models are designed to infer the re-
lationships among variables [14]. However, many Six Sigma tools assume ho-
moscedasticity and normality [62], and most MLA make minimal assumptions
about the statistical distribution of the data-generating systems [52]. More-
over, in statistics, model significance is determined based on the p-values [60],
whereas ML models are validated based on their ability to accurately predict
new data, that is, to generalize [5].

• Curse of dimensionality6. Traditional statistical modeling was designed for
data having a few dozen input variables and sample sizes that would be con-
sidered small or moderate by the current standards [14]. These methods can
be highly effective for high-dimensional data [70], and MLAs can efficiently
learn from high-dimensional data [22, 113, 27, 101].

• Computation time. There are two computational barriers for big data analysis:
the data can be too big for a computer’s memory, and the computing task can
take too long to generate results [152]. Most traditional statistical methods
were not developed keeping in mind these challenges. However, modern sta-
tistical methods have been developed in view of these challenges [152]. MLA
have embedded computational efficiency concepts to enable computational
feasibility when learning from big data (e.g., stochastic gradient descent [32]
and XGBoost [22]).

• Vision systems. Shortly after DL networks achieved superhuman performance
on image and object recognition [106, 65], a survey conducted in 2016 showed
that almost half of the respondents claimed that their inspections were mostly
manual [10]. This was expected because DL was not part of the quality tools
and had not achieved proper recognition performance when the traditional
quality philosophies were developed. Manual inspections are often subject to
the inherent operator biases (80% accuracy) [123]. Today, the development
and application of vision systems for QC is one of the most relevant research
topics in hyperautomation [151, 66, 126].

• Acceptance sampling. This technique has been widely implemented to ensure
good end-product quality [120]. In SM, the objective is to observe the quality
characteristics of interest of all the end products; no statistical inference is
required. Vision systems observe the quality of the BIW of all vehicles during
the assembly process and after the final assembly [44].

• Control charts. These charts support fault detection and diagnosis of industrial
processes and production results. However, univariate control charts [99] can-

6. The curse of dimensionality is the problem caused by the exponential increase in volume associ-
ated with adding extra dimensions to a Euclidean space. The error increases with the increase in
the number of features. Patterns are harder to learn in high dimensions and often have a running
time exponential in the dimensions [149].
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not detect patterns in hyperdimensional spaces. Multivariate control charts,
such as Hotelling’s T-squared statistic and the Q-statistic are calculated based
on a model using the Principal Component Analysis (PCA), which makes it
difficult for this method to identify the process variables that lead to the qual-
ity problems [114]. MLA can effectively learn patterns in hyperdimensional
spaces and identify the driving variables of the process [21].

Manufacturing innovations and business strategies were driven by the prin-
ciples of quality philosophies. Early adopters of Six Sigma, such as Motorola,
General Electric, and Honeywell, have become the most valued and admired
companies [132, 62]. Traditional quality philosophies have plateaued, and they
have stagnated with little innovation to offer to the manufacturing industry [166].

Today, while traditional quality philosophies are still necessary, they are not
driving SM innovations and interest7 in these philosophies have decreased (see
Fig. 1.9). Consequently, quality professionals have lost their leadership positions
to data scientists.

FIGURE 1.9 Google Interest of traditional quality philosophies with respect to ML.

1.5 THE RISE OF QUALITY 4.0

Quality 4.0 is the next natural step in the evolution of quality. The Fourth In-
dustrial Revolution is the era of quality. Many of the limitations of traditional
QC methods have been overcome, which has advanced the frontiers of manu-
facturing science and enabled the next sigma level. According to [79], Quality
4.0 refers to “the application of Industry 4.0’s advanced digital technologies to
enhance traditional best practices in quality management.” For ASQ, Quality

7. Interest over time. The numbers represent the search interest relative to the highest point on the
chart for the given region and time. A value of 100 is the peak popularity for the term.
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4.0 is a term that references the future of quality and organizational excellence
within the context of Industry 4.0 [3].

Intense modeling is the foundation of Quality 4.0. Regression, classification,
or clustering techniques [96] are applied to the observational data generated
by the manufacturing processes to develop empirical models and identify the
driving features [39, 15, 17, 42]. In [41], the authors define Quality 4.0 as
follows:

Quality 4.0 is the 5𝑡ℎ wave in the modern quality movement. This quality
philosophy is based on the statistical and managerial fundamentals of the previous
philosophies. It leverages MBD, IIoT, CSC, and AI to solve completely new sets
of complex engineering problems. Quality 4.0 is based on a new paradigm
that enables smart decisions through empirical learning, empirical knowledge
discovery, and real-time data generation, collection, and analysis.

Driven by the new technologies, building blocks, SM characteristics, and
MBD, traditional QC and QA philosophies are in the middle of a paradigmatic
transformation that requires the full attention of the management.

Industrialization of AI is today a megatrend that dominates the business
landscape. According to [58, 100], 92% of the surveyed leaders are increasing
their investments in big data and AI. According to an executive report from
the IBM Institute for Business Value [49], QC is the most cited priority for the
application of this technology; 66% of the surveyed executives expressed their
interest in developing AI systems having the capacity to analyze data from the
whole value adding process and after-sales service to identifying causal factors
that led to quality problems. In this context, quality professionals need to learn
new technologies to cope with the challenges posed to the Fourth Industrial
Revolution. Even before the term Quality 4.0 was coined, Montgomery made
the following recommendation [93]: “Quality professionals are going to have
to master some of the skills of computer science, such as understanding the
structure of large databases, basic data-mining techniques, image processing,
and data visualization techniques.”

According to Forbes [89], the lack of powerful people is one of the biggest
challenges facing these technologies in business. Quality professionals need
to be well versed in statistical methods and problem-solving strategies. The
Fourth Industrial Revolution is an excellent opportunity for the quality movement
to become relevant again and for quality professionals to return to lead roles
again [166, 4]. ASQ and [116] have proposed five distinctive attributes:

• Systems thinking
• Data-driven decision making
• Leadership for organizational learning
• Establishing processes for continuous improvement
• Understanding how decisions affect people—their lives, relationships, com-

munities, well-being, health, and society. In general, Quality 4.0 is founded
on the following six areas of knowledge [45]:
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• Quality
• Statistics
• Programming
• Optimization
• Learning
• Manufacturing

A Problem-Solving Strategy is required to combine them in a meaningful way
to create value (see Fig. 1.10). The value propositions for Quality 4.0 initiatives
fall into the following seven categories [16, 116, 4]:

Quality 4.0

Problem-Solving

Strategy Quality

Statistics

ProgrammingOptimization

Learning

Manufacturing

FIGURE 1.10 Areas of knowledge of Quality 4.0.

The value propositions for Quality 4.0 initiatives fall into seven categories, [16,
116, 4]:

• Detect rare quality events
• Predict quality issues
• Eliminate visual and manual inspections
• Augment human intelligence
• Increase the speed and quality of decision making
• Improve transparency, traceability, and auditability
• Develop new business models

As Quality 4.0 matures and different initiatives unfold across manufacturing
companies, intractable engineering problems will be solved using new technolo-
gies. Advancing the frontiers of manufacturing science, enabling manufacturing
processes to move to the next sigma level, and (in some cases) virtually achiev-
ing the zero defects vision have been widely discussed and redefined in quality
movements [25, 26, 140, 117, 153, 108, 40, 23].

By successfully implementing Quality 4.0, manufacturing companies can
competitively position themselves among the most advanced and influential
companies in the world. However, at this point of time, there is no strong
evidence of any successful implementation by any firm [166]. According to a
recent survey, quality leaders are universally citing difficulties in developing a
vision for Quality 4.0 [79]. Although two-thirds of the respondents believe that
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Quality 4.0 will significantly affect their operations within five years, only 16%
have started to implement a Quality 4.0 initiative, and 20% respondents have
started to plan for implementation; 63% respondents have not even reached the
planning stage yet, and zero respondents have done a full implementation [79]. In
this context, the first successful end-to-end application of Quality 4.0 is reported
in, [46].

The successful deployment rate of ML models across industries lies between
13% and 20% [131, 119]; however, the current benchmarks of quality, con-
formance, innovation, and productivity in manufacturing set an even higher bar
for the new technologies [111, 148, 124]. The manufacturing industry has been
innovating, advancing, and evolving since the beginning of the First Industrial
Revolution.

Successfully implementing Quality 4.0 requires much more than just access-
ing the new technologies, generating data, and fitting a model. It is necessary to
understand and address many managerial and practical challenges [6, 79, 41, 80].
The following steps are critical for successful implementation of Quality 4.0:

• Develop a vision and road-map
• Train the quality professionals in the new technologies
• Allocate budget for the new technologies
• Learn how to identify winning projects
• Define a strategy for data generation
• Understand the limitations of AI
• Consider if outsourcing would save money and complete projects quickly,

while in-house expertise is developed.

According to [155], Quality 4.0 developments will include MLA that will
observe, collect, and distribute data and will creatively know what to do and how
to improve the process. Smart solutions have the following characteristics

——————————————

• Systematize thinking with ML and AI.
• Industrialize production using control systems and adaptive feedback loops.
• Mechanize operations by applying robotic technology and automated con-

veyance.
• Automated information collection with distributed sensor networks unified in

cloud storage.
• Integrated communications using wireless networks and blockchain technol-

ogy.
• Humanized leadership through innovative participation in designing and ex-

ecuting the system.

Despite the powerful new technologies available, it is important to keep apply-
ing the scientific method for problem investigation, diagnosis, and remediation
[156].

In the following chapters, we will explain the Learning Quality Control



Introduction Chapter | 1 19

(LQC) system, which is a Quality 4.0 initiative that focuses on the application of
ML techniques to process-derived data for monitoring, controlling, predicting,
and improving the quality of discrete manufacturing systems. LQC systems have
the capacity to automatically learn quality patterns that exist in hyperdimensional
spaces and to learn new and transient sources of variations. To guide its imple-
mentation, the scientific method was adapted to develop a new problem-solving
strategy that is based on theory. The authors studied manufacturing systems and
investigated the empirical evidence.





Appendix A

Appendix title

A.1 DEFINITIONS AND ACRONYMS

A few brief definitions are listed here for easy readability and understandability1.

• Class, quality characteristic of the manufactured item, i.e., good or defective.
• Classification
• Binary classification
• Pattern
• Feature
• Label
• Training data
• Validation data
• Testing data
• Machine learning algorithm
• Hyperparameter
• Model
• Classifier
• Training
• Underfitting
• Overfitting
• Hyperdimensional space
• Separating hyperplane
• Classification performance
• Separable
• Generalization
• Confusion matrix
• Meta-learning algorithm
• Multiple classifier system

1. The readers are encouraged to consult more sources to reinforce understanding.
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TABLE A.1 Acronym definitions
Acronym Definition

AGV
AI

ANN
ASQ
BIW
CPS
CSC
DFSS

DL
DPMO
EDB
GDP
IBD
IoT
IIoT
IT

LVDT
ML

MLA
NIST
NSF
QA
QC

RFID
RPA
RSM
SIRI
SM

SQC
TQM
UMW

Automated Guided Vehicle
Artificial Intelligence
Artificial Neural Networks
American Society of Quality
Body-in-White
Cyber-Physical Systems
Cloud Storage and Computing
Design for Six Sigma
Deep Learning
Defects Per Million Opportunities
Economic Development Board
Gross Domestic Product
Industrial Big Data
Internet of Things
Industrial IoT
Information Technology
Linear Variable Differential Transformer 
Machine Learning
ML Algorithm
National Institute of Standards and Technology 
National Science Foundation
Quality Assurance
Quality Control
Radio Frequency Identification
Robotic Process Automation
Response Surface Methodology
Smart Industry Readiness Index
Smart Manufacturing
Statistical Quality Control
Total Quality Management
Ultrasonic Metal Welding
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